30 research outputs found

    Temporal Graph Traversals: Definitions, Algorithms, and Applications

    Full text link
    A temporal graph is a graph in which connections between vertices are active at specific times, and such temporal information leads to completely new patterns and knowledge that are not present in a non-temporal graph. In this paper, we study traversal problems in a temporal graph. Graph traversals, such as DFS and BFS, are basic operations for processing and studying a graph. While both DFS and BFS are well-known simple concepts, it is non-trivial to adopt the same notions from a non-temporal graph to a temporal graph. We analyze the difficulties of defining temporal graph traversals and propose new definitions of DFS and BFS for a temporal graph. We investigate the properties of temporal DFS and BFS, and propose efficient algorithms with optimal complexity. In particular, we also study important applications of temporal DFS and BFS. We verify the efficiency and importance of our graph traversal algorithms in real world temporal graphs

    A New Method of PV Array Faults Diagnosis in Smart Grid

    Get PDF
    A new fault diagnosis method is proposed for PV arrays with SP connection in this study, the advantages of which are that it would minimize the number of sensors needed and that the accuracy and anti-interference ability are improved with the introduction of fuzzy group decision-making theory. We considered five “decision makers” contributing to the diagnosis of PV array faults, including voltage, current, environmental temperature, panel temperature, and solar illumination. The accuracy and reliability of the proposed method were verified experimentally, and the possible factors contributing to diagnosis deviation were analyzed, based on which solutions were suggested to reduce or eliminate errors in aspects of hardware and software

    Ginsenoside Rh1 Improves the Effect of Dexamethasone on Autoantibodies Production and Lymphoproliferation in MRL/lpr Mice

    Get PDF
    Ginsenoside Rh1 is able to upregulate glucocorticoid receptor (GR) level, suggesting Rh1 may improve glucocorticoid efficacy in hormone-dependent diseases. Therefore, we investigated whether Rh1 could enhance the effect of dexamethasone (Dex) in the treatment of MRL/lpr mice. MRL/lpr mice were treated with vehicle, Dex, Rh1, or Dex + Rh1 for 4 weeks. Dex significantly reduced the proteinuria and anti-dsDNA and anti-ANA autoantibodies. The levels of proteinuria and anti-dsDNA and anti-ANA autoantibodies were further decreased in Dex + Rh1 group. Dex, Rh1, or Dex + Rh1 did not alter the proportion of CD4+ splenic lymphocytes, whereas the proportion of CD8+ splenic lymphocytes was significantly increased in Dex and Dex + Rh1 groups. Dex + Rh1 significantly decreased the ratio of CD4+/CD8+ splenic lymphocytes compared with control. Con A-induced CD4+ splenic lymphocytes proliferation was increased in Dex-treated mice and was inhibited in Dex + Rh1-treated mice. Th1 cytokine IFN-Îł mRNA was suppressed and Th2 cytokine IL-4 mRNA was increased by Dex. The effect of Dex on IFN-Îł and IL-4 mRNA was enhanced by Rh1. In conclusion, our data suggest that Rh1 may enhance the effect of Dex in the treatment of MRL/lpr mice through regulating CD4+ T cells activation and Th1/Th2 balance

    Vitamin D and cause-specific vascular disease and mortality:a Mendelian randomisation study involving 99,012 Chinese and 106,911 European adults

    Get PDF

    A New Method of PV Array Faults Diagnosis in Smart Grid

    No full text
    A new fault diagnosis method is proposed for PV arrays with SP connection in this study, the advantages of which are that it would minimize the number of sensors needed and that the accuracy and anti-interference ability are improved with the introduction of fuzzy group decision-making theory. We considered five "decision makers" contributing to the diagnosis of PV array faults, including voltage, current, environmental temperature, panel temperature, and solar illumination. The accuracy and reliability of the proposed method were verified experimentally, and the possible factors contributing to diagnosis deviation were analyzed, based on which solutions were suggested to reduce or eliminate errors in aspects of hardware and software

    Characteristics and Degradation Mechanisms under High Reverse Base–Collector Bias Stress in InGaAs/InP Double HBTs

    No full text
    In this paper, the reliability of InP/InGaAs DHBTs under high reverse base–collector bias stress is analyzed by experiments and simulation. The DC characteristics and S parameters of the devices under different stress times were measured, and the key parameters with high field stress were also extracted to fully understand and analyze the high-field degradation mechanism of devices. The measurements indicate that the high-field stress leads to an increase in base current, an increase in base–collector (B–C) and base–emitter (B–E) junction leakage current, and a decrease in current gain, and different degrees of degradation of key parameters over stress time. The analysis reveals that the degradation caused by reverse high-field stress mainly occurs in the B–C junction, access resistance degradation, and passivation layer. The physical origins of these failure mechanisms have been studied based on TCAD simulation, and a physical model is proposed to explain the experimental results

    Effects of Carbon Emission Trading on Companies’ Market Value: Evidence from Listed Companies in China

    No full text
    Emissions trading schemes (ETSs) are effective measures that facilitate economic growth and carbon mitigation, especially for developing countries such as China. These schemes can further affect the cash flow, production, and investment decisions of regulated companies. However, few empirical studies have explored how ETSs promote companies’ market value. We systematically evaluate the influence of the carbon emission trading (CET) policy on companies’ market value and explore the influential mechanism. We use the data of listed companies from the Chinese stock “A” markets and employ the difference-in-difference method to account for the unobserved cause of the CET policy regarding companies’ market value. Robust benchmark regression results reveal that the CET policy promotes companies’ market value significantly. The mechanism analysis reveals that the CET policy can improve the market value of listed companies by influencing the carbon price, innovative activities, and carbon disclosure. The results of the heterogeneity analysis show that the CET policy’s impact on companies’ market value is heterogeneous in terms of marketization degree, industry, firm ownership, and different regions. We suggest that the carbon pricing mechanism, degree of market perfection, carbon disclosure policy, and carbon finance should be optimized to improve the efficiency of ETSs

    An Aging Small-Signal Model for Degradation Prediction of Microwave Heterojunction Bipolar Transistor <i>S</i>-Parameters Based on Prior Knowledge Neural Network

    No full text
    In this paper, an aging small-signal model for degradation prediction of microwave heterojunction bipolar transistor (HBT) S-parameters based on prior knowledge neural networks (PKNNs) is explored. A dual-extreme learning machine (D-ELM) structure with an adaptive genetic algorithm (AGA) optimization process is used to simulate the fresh S-parameters of InP HBT devices and the degradation of S-parameters after accelerated aging, respectively. In addition to the reliability parametric inputs of the original aging problem, the S-parameter degradation trend obtained from the aging small-signal equivalent circuit is used as additional information to inject into the D-ELM structure. Good agreement was achieved between measured and predicted results of the degradation of S-parameters within a frequency range of 0.1 to 40 GHz
    corecore